Skip to main content

Re: Re: [MW:29354] Re: Porosity problems in Monel welding

Welcome Sandeep, when readily available from trusted sources where they have case studies on specific subject just share we can share you know, so i did the same which will save our scruitny.

Thanks.

Regards,
MOHAMED MUNEEB MAHABOOB
''If you know any art by any means then 
SCULPT IT - no matter how  useless it is 
-JUST SCULPT IT,     as you may not know
when experts    will be on         demand''
 
Date: 2019-03-21 18:52
Subject: Re: [MW:29329] Re: Porosity problems in Monel welding
Thanks Muneeb. Nice reference & explanation for the members. Saved my time for writing.



On Sunday, March 17, 2019 at 12:16:04 PM UTC+3, Muneeb wrote:

Porosity can be a problem with the nickel alloys, the main culprit being nitrogen. As little as 0.025% nitrogen will form pores in the solidifying weld metal. Quite light draughts are capable of disrupting the gas shield and atmospheric contamination will occur resulting in porosity. Care must be taken to ensure that the weld area is sufficiently protected and this is particularly relevant in site welding applications. With the gas shielded processes, gas purity and the efficiency of the gas shield must be as good as possible. Gas hoses should be checked for damage and leaks at regular intervals and, with the TIG process, as large a ceramic shroud as possible should be used together with a gas lens. It goes without saying that gas purging of the root is essential when depositing a TIG root pass.

A small amount of hydrogen (up to 10%) added to the argon shield gas has been found to reduce the problem. Start and finish porosity is a problem when MMA welding. The weld start should be carried out by welding back over the arc strike position, remelting any porosity that has formed due to the poor gas shielding at the start of the weld. Care also needs to be taken at the weld end, with the arc length reduced and travel speed increased slightly to reduce weld pool size.

Oxygen is also a cause of porosity in certain circumstances when it combines with carbon in the weld pool to form carbon monoxide. Consumable manufacturers generally overcome this problem by ensuring that sufficient deoxidants (primarily manganese, aluminium and titanium) are present in the filler metal.



Regards,
MOHAMED MUNEEB MAHABOOB

Date: 2019-03-15 23:53
Subject: [MW:29272] Re: Porosity problems in Monel welding
 

On Friday, March 15, 2019 at 10:02:03 AM UTC-5, CLV wrote:
Please suggest to overcome porosity problems observed during Monel 400 welding with CuNi-7 wire.
 
Porosity is generally the result of inadequate cleaning of the filler wire and groove area and / or loose Argon connections. Check all your Argon connections
from the torch to your regulator on the tank. All you need is one loose connection to suck a little air into your hose when you start to weld. Also check the hose proper by pressurizing the hose and submerging it in a water tank. Use some 'SNOOP' which is the brand name of a specific soap like liquid which you spray  on connections to see if they are leaking. You might also want to use a Argon / Helium mixture. Their are other reasons that can cause porosity. These are just two that I have had more experience with. Also try a search for 'Monel Welding' or 'Monel Porosity' on google.

--
https://materials-welding.blogspot.com/
https://www.linkedin.com/groups/122787
---
You received this message because you are subscribed to the Google Groups "Materials & Welding" group.
To unsubscribe from this group and stop receiving emails from it, send an email to materials-weld...@googlegroups.com.
Visit this group at https://groups.google.com/group/materials-welding.
For more options, visit https://groups.google.com/d/optout.

--
https://materials-welding.blogspot.com/
https://www.linkedin.com/groups/122787
---
You received this message because you are subscribed to the Google Groups "Materials & Welding" group.
To unsubscribe from this group and stop receiving emails from it, send an email to materials-welding+unsubscribe@googlegroups.com.
Visit this group at https://groups.google.com/group/materials-welding.
For more options, visit https://groups.google.com/d/optout.

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...