Skip to main content

[MW:1839] MWAP, Design Pressure, MDMT and Design Temperature

As per API 510, MAWP is defined as “The maximum gauge pressure permitted at the top of a pressure vessel in its operating position for a designated temperature. This pressure is based on calculations using the minimum (or average pitted) thickness for all critical vessel elements, (exclusive of thickness designated for corrosion) and adjusted for applicable static head pressure and non-pressure loads, e.g. wind, earthquake, etc.”.

 

What is the designated temperature?

 

How does MWAP differ from Design Pressure?

 

Similarly, MDMT has been defined in API 510 as “The lowest temperature at which a significant load can be applied to a pressure vessel as defined in the applicable construction code (e.g. ASME Code, Section VIII: Division I, Paragraph UG-20(b)).”

 

What is the difference between MDMT and Design Temperature?

 

 

Regards

 

Chandulal S Vithlani

 

**********************************************************************

Borouge is a leading provider of value creating, innovative plastics solutions for customers in the Middle East, Asia-Pacific and Africa. Borouge employs unique Borstar® technology to produce differentiated products for high-value infrastructure applications, including water, gas and industrial pipe systems, power and communication cables, advanced packaging and automotive components. Borouge's state-of-the-art petrochemical complex is located at Ruwais, Abu Dhabi in the United Arab Emirates.

===================================================================================
CONFIDENTIALITY NOTICE

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please delete the email and any attachment(s) and notify the sender.

This footnote also confirms that this email message has been scanned for the presence of computer viruses.
=============================================================================================================

 


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to materials-welding@googlegroups.com
To unsubscribe from this group, send email to materials-welding-unsubscribe@googlegroups.com
For more options, visit this group's bolg at http://materials-welding.blogspot.com/
The views expressed/exchnaged in this group are members personel views and meant for educational purposes only, Users must take their own decisions w.r.t. applicable code/standard/contract documents.
-~----------~----~----~----~------~----~------~--~---

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...