Skip to main content

[MW:2852] Re: effect of heat treatment on Austentic Steel

Hello Sandeep

Generally ASS are not stress relieved after welding due to the chances of sensitization i.e carbide precipitation in the temperature ranges of 425 - 900 degrees C.
However in certain critical applications for dimensional stability in long service, ASS have to be stress relieved after welding.

We have infact successfully carried out SR of ASS (304LN material)at 400 degreesC and 980 degrees C in certain critical jobs as per client requirement.

Stress relieving at temperatures below 400°C is an acceptable practice but results in only modest stress relief. Stress relieving at 425 to 925°C significantly reduces residual stresses that otherwise might lead to stress corrosion cracking or dimensional instability in service. One hour at 870°C typically relieves about 85% of the residual stresses. However, stress relieving in this temperature range can also precipitate grain boundary carbides, resulting in sensitisation that severely impairs corrosion resistance in many media.
To avoid these effects, it is strongly recommended that a stabilised stainless steel (grade 321 or 347) or an extra-low-carbon type (304L or 316L)or with Nitrogen addition like 304LN be used, particularly when lengthy stress relieving is required.

Full solution treatment (annealing), generally by heating to about 1080°C followed by rapid cooling, removes all residual stresses, but is not a practical treatment for most large or complex fabrications.

Low Temperature Stress Relieving:
When austenitic stainless steels have been cold worked to develop high strength, low temperature stress relieving will increase the proportional limit and yield strength (particularly compressive yield strength). This is a common practice for austenitic stainless steel spring wire. A two hour treatment at 345 to 400°C is normally used; temperatures up to 425°C may be used if resistance to intergranular corrosion is not required for the application. Higher temperatures will reduce strength and sensitise the metal, and generally are not used for stress relieving cold worked products.

Regards

Prem Nautiyal
Godrej, Mumbai.


On Thu, 30 Jul 2009 21:07:01 +0530 wrote
>Can anyone please tell about the effect of effect of heat treatment on
>Austentic Steel?
>
>Regards
>Sandeep kumar
>
>>
>

PREM S NAUTIYAL

CELL : 9820313278
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to materials-welding@googlegroups.com
To unsubscribe from this group, send email to materials-welding-unsubscribe@googlegroups.com
For more options, visit this group's bolg at http://materials-welding.blogspot.com/
The views expressed/exchnaged in this group are members personel views and meant for educational purposes only, Users must take their own decisions w.r.t. applicable code/standard/contract documents.
-~----------~----~----~----~------~----~------~--~---

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...