Skip to main content

How to Calculate the Rate of Metal Corrosion?

When most metals come into contact with certain substances in the air or water, they undergo a chemical change which decreases the integrity of the metal. This process is called corrosion. Oxygen, sulfur, salt, and other materials can all lead to corrosion. 

When a metal corrodes or deteriorates, it cannot hold the same loads as it did before corrosion began. At a certain point, corrosion can lead to dangerous conditions.

Metal used in bridges, railroad tracks, and buildings are all subject to corrosion. Because of this, it is important to monitor and manage corrosion to avoid structural collapse.

What Is the Rate of Corrosion?

The rate of corrosion is the speed at which any given metal deteriorates in a specific environment. The rate, or speed, is dependent upon environmental conditions as well as the type, and condition, of the metal.

Corrosion rates in the US are normally calculated using mpy (Mils per year). In other words, the corrosion rate is based on the number of millimeters (thousandths of an inch) it penetrates each year.

In order to calculate the rate of corrosion, the following information must be collected:

  • Weight loss (the decrease in metal weight during the reference time period)
  • Density (density of the metal)
  • Area (total initial surface area of the metal piece)
  • Time (the length of the reference time period)

Online Resources for Calculating Corrosion Rates: 

Corrosionsource.com provides an online metal corrosion rate calculator for computing corrosion rates.

To use the calculator, follow the link here: Corrosion Rate Calculator

Simply input the details above and click "Calculate" to calculate corrosion rates in millimeters, inches, microns or millimeters per year, or inches per minute.

Converting Corrosion Rates:

To convert corrosion rate between the mils per year and the metric equivalent millimeter per year (mm/y), you can use the following equation:

1 mpy = 0.0254 mm/y = 25.4 microm/y

To calculate the corrosion rate from metal loss:

mm /y = 87.6 x (W / DAT)

where:

W = weight loss in milligrams
D = metal density in g /cm3
A = area of sample in cm2
T = time of exposure of the metal sample in hours

Why Corrosion Rates Matter

Corrosion rates determine the life span of metal-based structures. This reality dictates the choice of metals used for different purposes, and in different environments. It also determines the maintenance requirements for structures: a metal structure in a wet environment may require more frequent maintenance than a similar structure in a drier location. Maintenance schedules are developed based on the types of calculations described above.

What Is Corrosion Engineering?

Corrosion engineering is a relatively new profession dedicated to slowing, reversing, and avoiding the impact of corrosion on materials and structure. They are responsible for developing coatings and treatments that can be used on metals to improve the metals' resistance to corrosion. They are also involved with the development of materials that are less vulnerable to corrosion.

New non-corroding ceramics, for example, can sometimes be substituted for metals.In situations where corrosion is likely to cause hazardous or expensive situations, corrosion engineers can recommend and implement solutions.

 

Source: https://www.thebalance.com

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...