Skip to main content

Avoiding distortion during welding stainless steels

Introduction

Although classed as readily weldable, the austenitic stainless steels can be prone to distortion during and after welding. This is due mainly to their specific combination of physical properties, mainly their relatively high thermal expansion rate and low thermal conduv
As they also readily work harden on cold working, localised partial stress relieving of machined or formed parts can also be a cause of distortion. Movement both during welding and after cooling is sometimes a problem especially where precision components are being made.

Removing cold work after forming or machining operations

Compared to other steels, including the ferritic and martensitic stainless steels, the austenitics strength levels are increased significantly during any form of cold working. This includes forming or machining of any sheet / plate, bar, tube or other product forms.
Where complex cold worked shapes need to be subsequently welded, solution annealing can be considered as a method of completely removing residual stresses.
Adequate protection of the surfaces will be needed to avoid unacceptable surface oxide film formation and any post heat treatment can reintroduce cold work stresses. Full solution annealing is usually accompanied by rapid cooling, but to avoid distortion slow (air) cooling may be preferable.
Use of the low carbon grades will avoid subsequent intercrystalline corrosion risks. See Stress relieving austenitic stainless steels.

Section sizes to be joined

Distortion is more likely when one member is considerably thicker than the other. Machining tapers onto the thicker section may help reduce distortion.

Fixturing and joint fit up

The use of fixtures should help reduce distortion risks as well as possibly reducing welding times and giving better finished fabrication tolerances. Fixtures should be stainless steel, to reduce the risk of introducing iron contamination.Iron contamination and rust staining 
Either as an alternative to fixturing, or as an additional measure, tack (spot) welds should be done evenly. It is important that tack welds are placed closer than when welding carbon steels. As a guide half the spacing compared to carbon steels should be used. It is also important that the tack welds are done in a sequence that evenly distributes their effect. Starting at one side and moving across a joint can result in the joint closing up at the opposite end. The TIG welding method is well suited to tack welding and wire brushed or ground before the final weld bead is laid on top.

Weld heat input

The heat input / /welding speed should be kept within the parameters for the electrode type and size. Attempts to weld at faster rates can be a cause of distortion, bearing in mind the combined affects of lower thermal conductivity and higher thermal expansion rates of the austenitic stainless steels compared to other stainless steels and carbon steels.

 

Source: http://www.bssa.org.uk/

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...