Skip to main content

Brazing stainless steels

Introduction

Most stainless steel types, with the exception of titanium or niobium stabilised grades, can be brazed.
The three main methods in common use for brazing stainless steels are:

brazing in air with flux

brazing under reducing atmosphere

vacuum brazing

Brazing in air with flux

For brazing stainless steels in air with flux low-temperature silver brazing alloys are generally used. Details of this category of filler materials is to be found in Table AG in the BS/EN 1044:1999. These include 56% Ag: Cu: In: Ni, with a melting range of 600-710 °C and 60% Ag: Cu: Sn, with a melting range of 602-718 °C.
These are recommended for use where crevice corrosion failure of a brazed joint can be anticipated.
Fillers containing either cadmium and zinc can result in corrosion to the stainless steel due the formation of phases that can result in some preferential corrosion.

The fluxes used are often mixtures of alkali-metal salts, which are solid at room temperature.
These need to be melted before they can begin to dissolve the oxide film on the surface of the stainless steel to be joined. The flux must remain sufficiently fluid, even when heavily laden with dissolved oxides, for it to be 'flushed out' of the capillary gap by the advancing front of molten brazing alloy.
To do this the flux must become active, and start dissolving oxides, at a temperature which is at least 50
°C below the solidus temperature of the brazing alloy being used and remain active, continuing to dissolve oxides, at a temperature that is at least 50 °C higher than the liquidus of the brazing material being used.
The flux must also be capable of wetting, and remaining on, vertical surfaces and the residue should be capable of being removed easily from the work-pieces at the end of the brazing cycle.
No single flux satisfies all these requirements and as result a whole series of proprietary fluxes areavailable. The various families of flux are detailed in BS/EN1045: 1999.

As a general rule, flux is best applied to the joints as a paste.
Flux paste should be evenly applied to the mating surfaces of the joint and the area immediately adjacent to it with particular care being taken to apply a liberal quantity to any sharp edges on the components in the vicinity of the joint.

Pre-application of flux to an assembly is better than the application of flux to the joint during the heating cycle.

A summary of the points to consider in air brazing with a flux is

the quantity of flux applied to the joint needs to be adequate

the brazing time needs to be as short as possible

the brazing temperature needs to be as low as possible

the heat in-put to the work balanced so that no portion of the joint experiences an excessive temperature.

Brazing under reducing atmospheres

The reducing atmosphere furnace brazing of stainless steel has seen rapid, and ongoing expansion since the mid-1990's. This was in response to demands from the automotive industry for fuel-rails and systems fabricated in stainless steel.

In this type of application chemical reduction of the surface oxides is relied upon to provide the oxide-free surface need to permit wetting and flow by the molten filler material. It is for this reason that brazing is generally carried out in a continuous conveyor furnace that is lined throughout with heat-resisting alloys so that the atmosphere can be contained.

Careful control of hydrogen, oxygen and water vapour levels is important in furnaces used for reducing atmosphere brazing.

Generally, copper, or copper-base alloys are used as the filler material in reducing atmosphere furnace brazing, and this means that brazing temperatures are typically in excess of 1085 °C

Vacuum brazing

In most applications where stainless steels are to be brazed in vacuum the high-temperature brazing filler metals are employed. The range of materials that are widely available being those listed in Table NI in BS/EN 1044:1999.

Vacumm brazing temperatures are usually 'high' ie in excess of 1000 °C. This provides an opportunity to do some heat treatments as part of the brazing operational cycle.

As part of the process the furnace can be 'back-filled' with an inert gas in order to assist in 'flushing out' any residual air from the capillary paths of the part to be brazed. This gas is removed before the brazing operation begins. Inert gas can be used to speed up cooling after the filler has solidified.

 

Source: http://www.bssa.org.uk/

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...