Skip to main content

RE: [MW:31479] brittle fracture CS 516 Gr.70N

 

Dear Ramin,

 

I extend the comment on the brittle fracture at -45 C of a SA-516 Gr.70N carbon steel with SAW process, using Flux / wire: F7A6-EM12K.

The findings were:

Manufacture of five pressure vessels, with shell thickness  32 mm /

Destination an Olefins Plant, propane refrigeration section.

By ASME VIII, Div. 1 impact test was required according to UG-84 / Minimum value 20 ft-lb per type of steel.

Charpy test: three 55x10x10 mm samples, absorbed energy was measured at -45C / values ​​of 4-6 ft-lb

Given these out-of-range values, we polished the samples and evaluate in the metallographic microscope: microstructure massive of coarse-grained ferrite and Widmanstatten ferrite was found. Ideally, for reliable service results, the welding forms an acicular ferrite-like structure, for excellent toughness against thermal shock at low temperatures.

The other faces of the fractured samples were observed in the electron microscope-SEM: topography was found with a high cleavage transgranular fracture, typical of a brittle fracture with total absence of dimples and with 60% of charred areas. Burned welding.

Investigating a little more, it was learned that the workshop did use the correct flux-wire combination F7A6-EM12K, and the qualified WPS, but made a mistake: in the night shift work and to speed up the manufacturing, it abused excess heat input, modifying the variables forward speed and voltage on the SAW machine, thereby violating the qualified WPS.

The Licensor, wanted to test in another Laboratory, extracted a longitudinal weld segment. It set up your Charpy tests, with results of 2-3 ft-lbs.

The pressure vessels were repaired on site, to meet quality assurances.

Other remarks:

The quality certificate for SA-516 Gr.70N steel plates indicated Charpy values ​​of 92 ft-lbs., average.

Mr. Pradip, has made his technical observations to this case (LinkedIn), among others the optimal value of heat input for the SAW process in welds with toughness tests, and recommends being attentive to the oxygen levels during the fusion and cooling process of the weld.

I am left with one question: How can a Welding Engineer or Welding Inspector detect or measure oxygen levels in a shop weld and if this variable should be annotated on the WPS qualified?

 

Regards,

Ramon Briceno

 

Sent from Mail for Windows 10

 

From: Ramin Kondori
Sent: Thursday, September 17, 2020 2:25 AM
To: materials-welding@googlegroups.com
Subject: Re: [MW:31463] brittle fracture CS 516 Gr.70N

 

Dear Ramon,

 

Could you share the test results (the lab roport)...?

Has the samples failed in weld metal or HAZ...?

Additionally, please provide us with other test results (tensile test, macro, etc.).

 

Details are very important here.

 

Regards 

Ramin  Kondori

Sr. QA/QC & Welding Engineer

-----------------------------------------------------------

PG-Dip. in Welding Engineering (IWE  AT  0070)

BSc. in Civil Engineering (IUT)

BGAS Painting Inspector

ASNT Level I&II

                        

IIW-Logo-Colour-small

 

 

On Mon, Sep 14, 2020 at 7:04 AM Customer Care <bricenori@hotmail.com> wrote:

Dear Fiends,

I have a question about how excessive heat input affects SAW type welding, in a steel SA 516 Gr. 70 N. That is, a material subjected to Charpy test at -45C, and gave brittle fracture with absorbed energy between 4 to 6 lb-ft.

The WPS / PQR clearly rated, but shop production welding gave these results on pressure vessels.

My certainties indicate that coarse-grained ferrite and widmanstatten ferrite could be formed during the cooling of the weld (highly brittle), and not the expected acicular ferrite, which is the appropriate structure for excellent ductile fracture results in this type of steel.

 

I open the forum,

 

Thanks for your attention.

 

Regards,

Ramon Briceno

Sent from Mail for Windows 10

 

--
https://materials-welding.blogspot.com/
https://www.linkedin.com/groups/122787
---
You received this message because you are subscribed to the Google Groups "Materials & Welding" group.
To unsubscribe from this group and stop receiving emails from it, send an email to materials-welding+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/materials-welding/BL0PR03MB4243D9B14CD62401925CA39FAA220%40BL0PR03MB4243.namprd03.prod.outlook.com.

--
https://materials-welding.blogspot.com/
https://www.linkedin.com/groups/122787
---
You received this message because you are subscribed to the Google Groups "Materials & Welding" group.
To unsubscribe from this group and stop receiving emails from it, send an email to materials-welding+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/materials-welding/CAEagfUidzGPHkE%3D%3D4sQKZerN2-q5TqXG-4xsdz5_OinMEo1zNA%40mail.gmail.com.

 

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...