Skip to main content

What are the sour service limits for UNS N08029?

 

UNS N08029 seamless tube is specified in ASTM B668-14. According to ISO 15156-3 Table A.12, UNS N08029 belongs to materials type 4c. However the material is not included in ISO 15156-3 2015 Annex D, Table D.3 – Chemical compositions of some solid-solution nickel-based alloys. Based on our testing using constant load and SSR (at least duplicate specimens), this material passed the tests in the sour environments outside of the limit for material type 4c.
Question 1: What would be done in order to include UNS N08029 in standard ISO 15156-3, Annex D, Table D.3?
Question 2: We are thinking of additional testing, to propose new limit through NACE Ballot. Are the data points “A” and “B” enough for extending the acceptable limit to the yellow area in the attached figure?
Question 3: Is one of the testing methods enough to propose the new limit, using constant load or SSR per NACE TM0177 or MR0198?
Question 4: Is 1 g/l sulfur ok to represent the environment with elemental sulfur?
Answer 1: Table D.3 is an informative table and adding a material that complies with type 4c is not a technical change. This can be added to the document at the next opportunity or Technical Circular at your request once a formal request for the editorial change is submitted.
Answer 2: Please refer to 15156-3 Annex B especially B.2.4. To extend the limits, you will need test data (in accordance to B.3 and for applicable cracking mechanisms in Table B.1) from a minimum of three separately processed heats. Since the alloy is cold worked to achieve mechanical properties note that B.3.2.c states that the following shall be considered “the directional properties of alloys because cold-worked alloys may be anisotropic with respect to yield strength and for some alloys and products, the susceptibility to cracking varies with the direction of the applied tensile stress and consequent orientation of the crack plane”.
Answer 3: Please refer to B.3.3. Generally, constant load tests are preferred for homogeneous materials. For constant load and constant displacement (constant deformation) tests, a test duration between 90 and 180 days should be considered. You can augment the data with SSRT test results.
Answer 4: This has been one of subjects recently discussed in the Maintenance Panel. The requirements for testing with elemental sulphur have not been fully defined but use of 1 g/L S0 is severely limiting. Please see NACE Corrosion 1995, Paper 47 for more details and guidance as to the appropriate methodology which will depend on the expected physical state of the elemental sulfur for the application conditions.
Reference: Maintenance Panel 2016-14 and is in relation to NACE MR0175 part 3, table D.3




Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...