Skip to main content

Re: [MW:35295] Ferrite content effects on corrosion

Dear Mohd Siraj,

Can you please provide a more precise answer to my question?

Your help will be highly appreciated.

On Tuesday, July 2, 2024 at 8:19:35 PM UTC+5 Mohd Siraj wrote:
it look like copy paste from chat gpt without even read the entire article. Many serious error are there..

technology can be used, but read and validate before answer it your way!

On Friday, May 31, 2024 at 8:09:17 AM UTC+3 Amol Betkar wrote:
Dear Tahir,

In urea production environments, materials used for constructing process equipment must be highly resistant to corrosion, particularly from carbamate solutions and other aggressive chemical compounds. For this reason, specific stainless steels such as 316 UG (Urea Grade) or 25Cr-22Ni-2Mo are preferred. These materials are designed to have very low or no ferrite content. Here's why controlling ferrite content is crucial in these grades and how ferrite can impact corrosion resistance:

Importance of Low Ferrite Content in Urea Grade Materials:

  1. Corrosion Resistance:

    • Corrosion Susceptibility: Ferrite phase in stainless steels is generally more susceptible to corrosion in the aggressive environments found in urea production. Ferrite can form galvanic cells with the austenite phase, leading to localized corrosion.
    • Carbamate Corrosion: Urea production involves the formation of ammonium carbamate, which is highly corrosive. Ferrite phases can be more prone to attack by carbamate solutions, leading to pitting and other forms of localized corrosion.
  2. Phase Stability:

    • Sigma Phase Formation: Ferrite is a precursor to the formation of sigma phase at high temperatures. Sigma phase is a brittle intermetallic compound that can drastically reduce toughness and corrosion resistance.
    • Chromium Depletion: The formation of sigma phase also causes chromium depletion in the surrounding matrix, further reducing the corrosion resistance of the material.
  3. Mechanical Properties:

    • Embrittlement: Ferrite can contribute to embrittlement at low temperatures, which is undesirable in many industrial applications where toughness is required.

How Ferrite Content Causes Corrosion:

  1. Galvanic Corrosion:

    • Differential Aeration Cells: Ferrite and austenite phases can form micro-galvanic cells. The anodic (ferrite) areas corrode preferentially, leading to localized corrosion like pitting or crevice corrosion.
  2. Decreased Passivity:

    • Chromium Distribution: Ferrite tends to have a different distribution of alloying elements, such as chromium, compared to austenite. This can lead to regions with lower chromium content, reducing the formation of the passive oxide layer that protects stainless steel from corrosion.
  3. Carbide Precipitation:

    • Sensitization: In ferritic regions, chromium carbides can precipitate at grain boundaries during thermal cycles, depleting chromium and making these regions more susceptible to intergranular corrosion.

Conclusion:

For urea grade materials such as 316 UG and 25Cr-22Ni-2Mo, maintaining a ferrite content lower than 0.6 percent or ensuring it is absent is essential to maximize corrosion resistance in the harsh environments of urea production. High ferrite content can lead to various forms of corrosion, including pitting, crevice corrosion, and intergranular corrosion, due to the formation of galvanic cells, phase instability, and localized depletion of chromium. Therefore, controlling the microstructure to minimize or eliminate ferrite is critical for ensuring the longevity and reliability of materials used in urea production plants.



On Thu, 30 May 2024 at 19:43, Talha Aamir <aamirt...@gmail.com> wrote:
Hi,
Why ferrite content should be lower than 0.6 percent or absent in Urea grade materials like 316 UG or 25Cr-22Ni-2Mo. How ferrite content causes corrosion ?

--
https://materials-welding.blogspot.com/
https://www.linkedin.com/groups/122787
---
You received this message because you are subscribed to the Google Groups "Materials & Welding" group.
To unsubscribe from this group and stop receiving emails from it, send an email to materials-weld...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/materials-welding/CABXHva59LxbW6p8X01uKt%3Dds%3DLqTqXcS2hY-yc085Z85_rLgUw%40mail.gmail.com.


--
Best regards,

Amol K.B
B.E(Mech), CSWIP 3.2.2, NACE CIP 1 & ASNT LII(4M)

--
https://materials-welding.blogspot.com/
https://www.linkedin.com/groups/122787
---
You received this message because you are subscribed to the Google Groups "Materials & Welding" group.
To unsubscribe from this group and stop receiving emails from it, send an email to materials-welding+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/materials-welding/e4d54948-b762-4252-a581-86cd6924d311n%40googlegroups.com.

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...