Skip to main content

HOW TO AVOID PWHT


The above picture is of a new pressure vessel that failed during its hydraulic test. The vessel had been stress relieved, but some parts of it did not reach the required temperature and consequently did not experience adequate tempering. This coupled with a small hydrogen crack, was sufficient to cause catastrophic failure under test conditions. It is therefore important when considering PWHT or its avoidance, to ensure that all possible failure modes and their consequences are carefully considered before any action is taken.

The post weld heat treatment of welded steel fabrications is normally carried out to reduce the risk of brittle fracture by: -

  • Reducing residual Stresses. These stresses are created when a weld cools and its contraction is restricted by the bulk of the material surrounding it. Weld distortion occurs when these stresses exceed the yield point. Finite element modelling of residual stresses is now possible, so that the complete welding sequence of a joint or repair can be modelled to predict and minimise these stresses.

  • Tempering the weld and HAZ microstructure. The microstructure, particularly in the HAZ, can be hardened by rapid cooling of the weld. This is a major problem for low and medium alloy steels containing chrome and any other constituent that slow the austenite/ferrite transformation down, as this will result in hardening of the micro structure, even at slow cooling rates.


The risk of brittle fracture can be assessed by fracture mechanics. Assuming worst-case scenarios for all the relevant variables. It is then possible to predict if PWHT is required to make the fabrication safe. However, the analysis requires accurate measurement of HAZ toughness, which is not easy because of the HAZ’s small size and varying properties. Some approximation is possible from impact tests, providing the notch is taken from the point of lowest toughness.

If PWHT is to be avoided, stress concentration effects such as: - backing bars, partial penetration welds, and internal defects in the weld and poor surface profile, should be avoided. Good surface and volumetric NDT is essential. Preheat may still be required to avoid hydrogen cracking and a post weld hydrogen release may also be beneficial in this respect (holding the fabrication at a temperature of around 250C for at least 2 hours, immediately after welding).

Nickel based consumables can often reduce or remove the need for preheat, but their effect on the parent metal HAZ will be no different from that created by any other consumable, except that the HAZ may be slightly narrower. However, nickel based welds, like most austenitic steels, can make ultrasonic inspection very difficult.

Further reduction in the risk of brittle fracture can be achieved by refining the HAZ microstructure using special temper bead welding techniques.

Source: http://www.gowelding.com/met/pwht.htm

Comments

Popular posts from this blog

Materails FAQs

Q: What are equivalents for standard Q 235 B (and Q 235 A) for U-channels? (asked by: boris.vielhaber@vait.com) A: DIN Nr. = 2393 T.2, 2394 T.2, EN 10025 W. Nr. DIN 17007 = 1.0038 Design DIN 17006 = RSt 37-2, S235JRG2 (Fe 360 B) Q: What is St DIN 2391 BK material? (asked by: dmcandrews@automaticstamp.com) A: Precision steel tubes, cold-finished/hard. Q: What is C.D.W. Boiler Tube? (asked by: montydude123@yahoo.com) A: Cold Drawn Welded Boiler Tube. Q: WHAT IS W.Nr. 1.4301? PLS TELL US IN EASY LANGUAGUE (asked...

Heat tint (temper) colours on stainless steel surfaces heated in air // Heat tint

Introduction The colour formed when stainless steel is heated, either in a furnace application or in the heat affected zone of welds, is dependent on several factors that are related to the oxidation resistance of the steel. The heat tint or temper colour formed is caused by the progressive thickening of the surface oxide layer and so, as temperature is increased, the colours change.   Oxidation resistance of stainless steels However, there are several factors that affect the degree of colour change and so there is no a single table of colour and temperature that represents all cases. The colours formed can only be used as an indication of the temperature to which the steel has been heated. Factors affecting the heat tint colours formed Steel composition The chromium content is the most important single factor affecting oxidation resistance. The higher the chromium, the more heat resistant the steel and so the development of the heat tint colou...

Re: [MW:10788] ON PLOT PIPING & OFF PLOT PIPING

Piping systems involved for the flow lines and gathering lines from the well head isolation valve to the production facility or processing plant isolation valve are determined as OFF PLOT. ON PLOT defines piping system in the processing plant and production platform. ANSI/ASME B31.4 applies for off plot piping system. B31.4 allows the use of either API 1104 or ASME section IX (as appropriate). However, occasionally, a very small system such as piping within 500 feet of a processing plant (some client also said 400 feet) may be declared B31.3 rather than B31.4. When B31.3 is invoked, only ASME Section IX is used. before you decide which code to use for welding procedure and/or welder qualification for pipe welding, you have to know the design and construction code applicable to the system. Please read far enough into scope and diagram illustrating the application of either B31.3 and B31.4 hope this helps rgds 2011/4/21 pradip kumar sil < pradipsil@gmail.com > Dear all, ...